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ABSTRACT

A historical water clarity index (Kd index or KDI) was developed through the use of satellite-derived and

validated diffuse light attenuation (Kd; m
21) for each of the Great Lakes (and subbasins) on a daily level

from 1998 to 2015. A statistical regionalization was performed with monthly level KDI using k-means

clustering to subdivide the Great Lakes into regions with similar temporal variability in water clarity. The

KDI was then used to assess the relationship between water clarity and atmospheric circulation patterns

and stream discharge. An artificial neural-network-based self-organized map data reduction technique was

used to classify atmospheric patterns using four atmospheric variables: mean sea level pressure, 500-hPa

geopotential heights, zonal and meridional components of the wind at 10 m, and 850-hPa temperature.

Stream discharge was found to have the strongest relationship with KDI, suggesting that sediments and

dissolved matter from land runoffs are the key factors linking the atmosphere to water clarity in the Great

Lakes. Although generally lower in magnitude than stream discharge, atmospheric circulation patterns

associated with increased precipitation tended to have stronger positive correlations with KDI. With no

long-range forecasts of stream discharge, the strong relationship between atmospheric circulation patterns

and stream discharge may provide an avenue to more accurately model water clarity on a subseasonal-to-

seasonal time scale.

1. Introduction

The Great Lakes Basin is an ecologically diverse re-

gion, home to more than 3500 plant and animal species,

nearly 34 million people, and 84% of North America’s

freshwater (Fuller et al. 1995). More than 30% of the

U.S. and Canada’s gross domestic product is generated

in the region (Krantzberg and Boer 2006). In recent

decades, water clarity across most of the Great Lakes

has increased, a trend observed both through field ob-

servation and through the interpretation of data from

various remotely sensed observations (Binding et al.

2007; Fig. 1). This trend is thought to be associated with

the increase in invasivemussel species in recent decades,

contributing to reductions in phytoplankton biomass

and disruptions in food chain dynamics (Binding et al.

2007; Vanderploeg et al. 2001; Rennie et al. 2009;

Nalepa et al. 2009). The mussels increase water clarity

by removing particulate matter at a rate of up to one

liter per mussel per day (Binding et al. 2007; Nalepa

et al. 2010; Ransibrahmanakul et al. 2018; Shuchman

et al. 2017) and stimulate benthic plant growth by en-

hancing the amount of light penetration in the water

(Ricciardi et al. 1997; Skubinna et al. 1995). In other

areas, particularly western Lake Erie, water clarity has

decreased as a result of cyanobacterial blooms and

resuspension of inorganic matter (Millie et al. 2009;

Makarewicz et al. 1999; Binding et al. 2007). These

cyanobacterial blooms are exacerbated by the influx of

high concentrations of nutrients through eutrophication

(Scavia et al. 2014). The increase in nutrients, particu-

larly phosphorus, into the western basin of Lake Erie

is primarily related to regional agricultural practices,

with increased eutrophication following large pre-

cipitation events during spring (Michalak et al. 2013;

Watson et al. 2016). Collectively, these water clar-

ity changes have profound ecological impacts. While

many of the changes in the Great Lakes can be tracedCorresponding author: Erik T. Smith, esmit149@kent.edu
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to anthropogenic influences such as the introduction

of invasive species as well as industrial and agricul-

tural pollution, anthropogenic forcing and climate

change should also be considered primary contribu-

tors to changes in water clarity over time (Shuchman

et al. 2017).

In contrast to many other water basins, both turbid

and excessively clear water may trigger negative envi-

ronmental responses. Lakes Michigan and Huron have

experienced a decrease in chlorophyll-a concentration

as water clarity has increased (Barbiero et al. 2011;

Fahnenstiel et al. 2010), leading to a significant reduc-

tion in food supply for many of the crustacean species

(Barbiero et al. 2011). Meanwhile, the decrease in

water clarity in western Lake Erie has resulted in an

increase in toxic cyanobacteria (Michalak et al. 2013).

Understanding the role of climate on these complex

ecosystem–stressor interactions is vital to developing a

consistent water clarity index applicable for each basin.

Synoptic climatology has been used to identify at-

mospheric patterns and their relationship to long-

term changes and variability in ocean chlorophyll

levels (Sheridan et al. 2013), anomalously cold sea

surface temperature events (Pirhalla et al. 2014), and

overall water clarity (Sheridan et al. 2014), for coastal

ocean waters of the southeastern United States. The

Great Lakes system differs from ocean water in several

aspects, including the presence of seasonal ice cover

and seasonal variability in stream discharge, along with

various other environmental stressors that affect this

closed freshwater system. Water temperature has been

shown to play an important role in the growth, survival,

and distribution of many species (Dobiesz and Lester

2009; Trumpickas et al. 2009).Wind has also been shown

to influence water clarity not only by increasing sus-

pended particles but also indirectly by altering the lake

temperature profile (Niemistö 2008; Thiery et al. 2014).

Despite current evidence of the severity of the invasive

mussel problem, knowledge is limited concerning how

climate variability, weather systems, mussels (zebra and

quagga), land use changes and other factors interact as

coupled systems.

Traditionally, water clarity is measured as the Secchi

disk depth (SDD;m), that is, the depth at which a black–

white disk is no longer visible to a human eye (Lee

et al. 2018). SDD is inversely proportional to the diffuse

downwelling light attenuation coefficient (Kd;m
21) at

the wavelength where light penetrates the deepest

FIG. 1. Final regions and gauging stations. The inset map shows the spatial extent of the 500z SOM, with the red outline showing

the spatial extent of the 850t and UVwind SOMs. The spatial extent of the MSLP SOM is similar to that of the 500z SOM (inset) but is

58 smaller in each direction.
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(Lee et al. 2018), usually in the blue or blue-green

region of the visible light. The two major contributors

to Kd are particles (including living particles such

as phytoplankton and nonliving particles such as

sediments, both contributing to water turbidity) and

colored dissolved organic matter (Davies-Colley and

Smith 2001), both of which are rich in stream dis-

charge, particularly in a closed system like the Great

Lakes. However, long-term forecasts of stream dis-

charge are not available, preventing it from being

used as a variable in forecasts of water clarity. This

study develops a historical water clarity index [Kd

index (KDI)] for the Great Lakes to assess the con-

nection between water clarity, stream discharge, and

atmospheric circulation patterns (CPs) to improve the

ability to forecast extreme water clarity episodes in the

Great Lakes on a seasonal time scale.

2. Data and methods

a. Water clarity data and geographic regionalization

Level 2 multispectral remote sensing reflectance

(Rrs; sr
21) data from the Moderate Resolution Imaging

Spectroradiometer (MODIS/Aqua, with native spatial

resolution at nadir of ;1 km) spanning the months July

2002–December 2015 (15 359 files) within the bounds

from 18 to 498N and from 768 to 928Wwere downloaded

from the National Aeronautics and Space Administration

(NASA) Goddard Space Flight Center ocean color

website (http://oceancolor.gsfc.nasa.gov). Each granule

(i.e., file) was mapped to an equidistant rectangular

projection with 1-km spatial resolution. Pixels with

negative Rrs at any wavelength were excluded from

TABLE 1. The number of retained principal components and

the explained variance of the retained PCs for each atmospheric

variable.

Variable Retained PCs Explained variance

500z 26 99.37

MSLP 22 98.81

850t 4 98.69

UVwind 49 98.60

FIG. 2. Decadal change in KDI from 1997 to 2015. Significance at the 95% confidence level is denoted with hatching. Positive values

indicate decreased water clarity; negative values indicate increased water clarity.
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analysis, as were pixels identified by any of the NASA stan-

dard level 3 flag suite (see https://oceancolor.gsfc.nasa.gov/

atbd/ocl2flags/). Reflectance data were used to calculate

Kd at 488nm [Kd(488)] via the Kd_lee algorithm (Lee

et al. 2005) and were subsequently used for regionali-

zation and time series analyses. The Kd_lee algorithm

decomposes the spectral Rrs data to absorption and

backscattering coefficients, from which Kd(488) was

estimated. Validation using field-measured Kd showed

that Kd_488_lee is more accurate than other satellite-

basedKd data for productive waters [e.g., whenKd(488)

is. 0.3m21] (Zhao et al. 2013).MonthlymeanKd_488_lee

data were calculated for each 1km location in the Great

Lakes region during each month. Monthly mean and

standard deviation climatologies of Kd_488_lee were

also calculated. For each month, the monthly mean

Kd_488_lee datawere then compared to theseKd_488_lee

climatologies in order to calculate a KDI for each

pixel, as

KDI5 (monthly_mean2monthly_mean_climatology/

monthly_stdev_climatology). (1)

To quantify spatially varying climate–KDI relation-

ships, we undertook a statistical regionalization using a

k-means clustering of monthly level KDI data to divide

the Great Lakes into 20 regions. The clustering method

and number of regions were selected by assessing

multiple clustering algorithms [k-means, self-organized

maps (SOMs), average linkage hierarchical, and Ward’s

linkage hierarchical] and multiple numbers of clusters

(including SOMs from sizes 33 3 to 63 6 and from k5 5

to k 5 15 for the other clustering algorithm options) with

clustering validation metrics [the Calinski–Harabasz

criterion, the Davies–Bouldin criterion, the silhouette

criterion, the variability skill score (Lee 2014), and the

distributed variability skill score (Lee 2017)]. Of nearly

50 different options, the best-performing clustering so-

lution was k means with a 15-cluster solution. While

most of the 15 regions were spatially homogenous, some

were split into multiple lakes, necessitating the hand

drawing of the final regions in ArcMap (using the clus-

tering results as the framework). Regions that were

clustered into the same regions but split geographically

were simply identified as separate regions, ultimately

resulting in an extra five regions added to the original

15-cluster solution derived from clustering and yield-

ing the final 20-region map used in all further ana-

lyses (Fig. 1).

Spatially averaged KDI data for these 20 regions

were then calculated with daily temporal resolution.

Specifically, for each calendar date (N 5 366), 30-day

running climatological mean and standard deviation

maps were developed. Pixel-specific daily mean Kd_lee

data from each day in the MODIS time series were then

compared to these climatological values to derive

KDI in a manner similar to Eq. (1), except that daily

mean values were compared to the corresponding

running mean and standard deviation climatologies

(i.e., those climatologies centered on the calendar

date of the day of interest). Note, to account for the

increased spatial heterogeneity in the daily mean data

(relative to monthly means), a 5 3 5 median filter was

applied to each individual MODIS image prior to

daily mean calculation. From the KDI maps, daily

mean KDI at each of the 20 regions was calculated for

use in subsequent analysis of water clarity–climate re-

lationships. Regional KDI values were retained for

further analyses if at least 5% of the pixels in the region

had data—a threshold determined based upon previous

research using the KDI (Lee et al. 2017). Percentiles

were calculated for each region’s KDI distribution and

used to examine trends in extreme clear KDI events

(20th percentile) and turbid KDI events (80th percen-

tile). The KDI was then linearly detrended to remove

FIG. 3. KDI by month from 1997 to 2015 for each region (x axis).

KDI is normalized for each region (columns), where red denotes

low water clarity (high KDI) and blue denotes higher water clarity

(lower KDI) relative to the region. The black-outlined boxes

highlight a period of high KDI for Lake Huron (on the left) and

Lake Michigan (on the right).
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the trends related to regional changes in mussel pop-

ulation throughout the study period. This was particu-

larly important in Lakes Michigan and Huron where a

large increase in water clarity has been observed in re-

cent decades.

b. Synoptic climatological analysis

Hydrological data were acquired to examine the re-

lationship of water clarity with stream discharge and

precipitation. The stream discharge (m3 s21) data were

gathered from reliable U.S. (U.S. Geological Survey

2017) and Canadian (Water Survey of Canada 2017)

streamflow gauging stations near each lake. The

gauging stations were divided according to the lake

regions (Fig. 1) in which the stream ends. Regions 4

and 9 had no gauging stations with at least 25 years of

data, therefore the nearest station from an adjacent

region was used instead. A generalized linear model

was used to determine the relationship between

stream discharge volume and KDI. Daily precipita-

tion totals across the region of study were acquired

from the National Centers for Environmental Prediction

NorthAmericanRegional Reanalysis (NARR;Mesinger

et al. 2006). Themean daily precipitation was determined

for each region by using the NARR grid points over

each lake’s watershed, rather than over the lake itself,

as the former method resulted in higher Pearson-based

correlations between precipitation and water clarity

than the latter.

For the synoptic climatological analysis, this study uti-

lized four atmospheric variables, each of which was in-

dependently analyzed: mean sea level pressure (MSLP),

500-hPa geopotential heights (500z), 850-hPa tempera-

tures (850t), and the dailymean zonal (U) andmeridional

(V) components of the zonal wind at 10m (UVwind).

These variables were obtained from the NARR and used

to classify a set of typically occurring circulation patterns

across the Great Lakes from 1979 to 2015. The spatial

extent of each variable was centered over the Great

Lakes, with the large-scale circulation variables, 500z and

MSLP, having a much larger spatial extent than 850t and

UVwind. Prior to classification, a daily spatial gradient

was calculated by subtracting themean of the dailyMSLP

and 500z field from each grid point’s raw value to em-

phasize the daily pressure and height gradient and to

reduce the seasonality of 500z.

Similar to the statistical regionalization, clustering

dimensions ranging from 4 clusters to 81 clusters,

were assessed using SOMs, k-means, and two-step

clustering, with the same cluster validation metrics

[the Calinski–Harabasz criterion, the Davies–Bouldin

criterion, the silhouette criterion, the variability skill

score (Lee 2014), and the distributed variability skill

score (Lee 2017)] used to determine the best clustering

FIG. 4. Count of 20th-percentile (black—clearer water) and 80th-percentile (red—less clear water) KDI events by year. Regions with

significant changes are highlighted with a gray background with the decadal slopeM shown for both the 80th-percentile (in upper right of

panel) and 20th-percentile (in bottom left of panel) events.
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solution for the four atmospheric variables. Because

the SOM is easier to interpret visually, preference

was given to the SOM for clustering solutions that

performed similarly across all three clustering methods.

Ultimately, the 7 by 5 SOM clustering solution had the

best validation scores for 500z, while the 6 by 3 SOMwas

best for 850t, the 4 by 4 SOM for UVwind, and the 6

by 5 SOM for MSLP. The SOM training process is

outlined below.

Each of the four atmospheric variables was first

subjected to an s-mode principal components analy-

sis to reduce spatial collinearity (Sheridan and Lee

2011); all principal components (PCs) with eigen-

values greater than 1 were retained for classification.

The number of retained PCs and the explained vari-

ance of the retained PCs is shown in Table 1. As is

noted by Philipp et al. (2014), the artificial neural-

network-based SOM method often yields the most

stable and reproducible results, which was also found

herein for the four atmospheric variables (500z, MSLP,

850t, and UVwind). Furthermore, the SOM method

promotes a more intuitive visualization of the classifi-

cation by organizing the resultant patterns onto a two-

dimensional plane with the most different circulation

patterns in opposite corners and the most similar ones

more nearby (Hewitson and Crane 2002). The SOM

‘‘training’’ began by placing k nodes into random initial

starting points within the multidimensional data space,

with each node representing one of the final circula-

tion patterns. As the SOM was trained on a batch of

observations (e.g., daily fields of MSLP), the algo-

rithm iteratively adjusted the positions of the nodes

in the data space to envelop the data cloud, naturally

placing more nodes into denser areas of the data-

space as it assigned each data point to the node to

which it was nearest. In addition to adjusting the

position of these ‘‘assigned nodes’’ toward the mean

of their member observations, with each pass of the

batched data, the position of the nodes that were

within a certain radius (using a neighborhood radius

parameter defined by the user) of the assigned node

in the data space were also adjusted at each step to a

lesser degree (using a learning rate parameter, also

defined by the user), differentiating the SOMmethod

from other classification techniques, such as k-means

(Sheridan and Lee 2011). A SOM array was gener-

ated for each of the four variables, and each day in

the period of study was assigned to the node in the

array it most closely resembled, generating a ‘‘calendar’’

of atmospheric patterns.

FIG. 5. Correlation between discharge and KDI for each region during spring. Significant correlations (a # 0.05) are denoted with

color-filled points.
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c. Assessing the relationship between KDI and
atmospheric/hydrological variables

To assess the holistic effect of each SOM (i.e., effect

size of the whole SOM, rather than examining each

individual pattern within a SOM) on partitioning

KDI across CPs, nonlinear (eta) correlations were

examined. Based on ANOVA, the eta correlation

h measures the nonlinear relationship between a

categorical variable (CPs) on a continuous variable

(KDI) and is equal to the square root of the sum of

squares between the groups/categories/CPs, divided

by the total sum of squares:

h5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
m

i51
�
ni

j51

(X
i.
2X

::
)
2

�
m

i51
�
ni

j51

(X
ij
2X

::
)2

vuuuuuuut
,

whereXi. denotes the mean KDI of the data for CP i,X ::

is the grand mean of all the KDI data, and Xij denotes

the jth observation in the ith CP. More simply, the

numerator is calculating the sum of squares between

groups/CPs (i.e., the sum of the squared differences

between the CP mean KDI and the grand mean KDI),

while the denominator is calculating the total sum of

squares (i.e., the sum of the squared differences between

each data point and the grand mean KDI).

Eta can therefore range between 0 and 1, with larger

values indicating a greater effect size (stronger6 nonlinear

correlation). The eta correlations were examined for each

SOM (500z, 850t, UVwind, and MSLP). To better under-

stand the lagged relationship betweenKDI and the surface

and atmospheric variables, Spearman cross correlations

r with lags up to 28 days were examined for the linearly

detrended daily mean KDI data. The correlations were

calculated by region and season to characterize the spatial

and temporal fluctuations. The mean daily precipitation

for each region’swatershedwas used to correlateKDIwith

precipitation. Discharge from individual gauging stations

was correlated with KDI, while individual SOM patterns

were correlated with KDI for the atmospheric variables.

Generalized linear regression was used to assess the rela-

tionship between stream discharge volume and KDI.

Because of the large number of variables and regions

examined, much of the discussion below focuses on the

relationship between KDI and discharge and precipita-

tion for all regions during spring, then narrows the focus

to a single region (region 12) and season when dis-

cussing the relationship between individual CPs and

KDI. Individual CPs will be denoted according to the

SOM variable and the pattern number, with the first CP

of the 500z, MSLP, 850t, and UVwind SOMs denoted as

Z1, S1, T1, and W1, respectively. Lake Erie (regions 12,

13, and 14) was selected because of the water clarity

issues impacting the western portion of the lake (region

FIG. 6. Nonlinear (eta) correlation between each SOM and KDI by region. Significance at the 95% confidence level is denoted with

hatching.
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12). In this region, the decrease in water clarity is asso-

ciated with algal blooms that contain toxic cyanobac-

teria, posing a risk to human life (Michalak et al. 2013).

It is also home to the largest human population of the

fiveGreat Lakes (Great Lakes Environmental Research

Laboratory 2019). Spring was selected because it is a

period of large atmospheric variability in the Great

Lakes and the time of year when water clarity begins

to decline in Lake Erie. Winter was omitted from the

discussion because of the large percentage of days with

no KDI data due to ice cover and high cloudiness. This

is supported by Ackerman et al. (2013) who showed

cloud cover for five Great Lakes exceeded 80% during

meteorological winter. Furthermore, Mason et al.

(2016) showed the 1973–2013 mean duration of ice

coverage in Lakes Erie, Huron, and Superior was one

to three months, with similar durations in the shallow,

near-land portions of Lakes Michigan and Ontario.

3. Results and discussion

a. Trends and variability in KDI

For many regions, the secular trend in KDI accounted

for the largest variability in water clarity over the 18-yr

period of observation (Fig. 2). With the exception of

FIG. 7. SOM of the spatial gradient of 500-hPa geopotential height (m) and the seasonality of each pattern (bar graphs). Pattern

numbers are placed above the respective SOM patterns. For the bar graph, the months are color coded by season, with blue bars

representing the frequency of the SOM pattern occurrence during the three meteorological winter months (December–February),

green representing meteorological spring (March–May), red representing meteorological summer (June–August), and yellow

representing meteorological autumn (September–November). The dotted line indicates 10% monthly frequency.
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regions 13 and 14 in Lake Erie, most of the trends in

KDI were negative (i.e., decreased KDI values or in-

creased water clarity). Consistent with the findings from

Yousef et al. (2017), the largest negative trends were

observed in regions of Lakes Michigan and Huron. This

suggests that a major environmental element is resulting

in the increased water clarity across regions in Lakes

Michigan and Huron, namely, the increase in invasive

mussels (Yousef et al. 2017). However, the mussels have

also increased rapidly in Lakes Erie and Ontario, which

have experienced almost no increase in water clarity and

even a slight decrease in clarity (i.e., slight increase in

KDI) in regions 13 and 14 in Lake Erie. While the

number and species of mussel, along with the rate of

increase of the mussels can impact the secular trend, the

large discrepancies between lakes suggests another en-

vironmental element may be acting to reduce water

clarity in these regions. In Lake Erie this may be ex-

plained by the reeutrophication since the 1990s that has

led to increased algae growth and decreased water

clarity (Chapra and Dolan 2012; Robertson and Saad

2011; Scavia et al. 2014).

The monthly mean KDI values for each region (Fig. 3)

reveal why theKDI trend inLakesMichigan andHuron is

negative. From late 1997 through 2004, the KDI values in

Lakes Michigan and Huron were the highest of the 19-yr

period for any lake. The KDI has remained stable in

Lakes Erie (regions 12, 13, and 14), Superior (regions

1–5), and Ontario (region 15) throughout much of the

time series. This is further supported by the consistency in

extreme KDI events [defined by the 20th (clear) and 80th

(turbid) percentiles of each region’s KDI distribution] in

Lakes Erie, Ontario, and Superior (Fig. 4), while Lakes

Michigan and Huron, particularly regions 9 and 20,

have transitioned from almost no clear events early in the

study period to upward of 100 such events per year.

b. Stream discharge and KDI

Stream discharge was the most strongly correlated

surface variable with KDI. Smaller streams (by discharge

FIG. 8. Correlation of 500z spatial gradient SOM patterns with KDI for region 12 during spring (March–May). Pattern numbers are

placed above the respective SOM patterns. Correlations are missing for several summer-dominant patterns for which too few patterns

occurred during the spring. Significant correlations (a # 0.05) are denoted with color-filled points.
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volume) generally had shorter lag periods than larger

streams; however, there is no significant relationship

between stream size (e.g., average discharge volume)

and KDI. For this reason, only the stream with the

highest correlation is shown in Fig. 5. The strongest

correlations (max r5 0.36) occurred within a lag of two

weeks and were located in the western side of Lake

Erie (regions 12 and 13) where algal blooms are most

FIG. 9. As in Fig. 7, but for 850t (8C) and the dotted line indicates 30% monthly frequency.

FIG. 10. As in Fig. 8, but for 850t.
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prominent and water clarity is typically the lowest

(Michalak et al. 2013). Region 3 stream discharge was

also highly correlated with KDI; however, the long and

narrow shape of the region may influence the time it

takes for portions of the region to be affected by stream

discharge, resulting in a lag in the larger correlations

between KDI and stream discharge. Lakes Michigan

(regions 8 and 9) and Huron (regions 18 and 19) had

several regions with a negative correlation between

stream discharge andKDI during the spring, suggesting

increased water clarity following high discharge events.

The KDI in the same regions have stronger positive

correlations with stream discharge during the summer.

The negative correlations (clearer water during higher

flow or cloudier water during lower flow) may be a

result of frozen ground and a larger areal snowpack

during the winter and early spring months, reducing the

amount of sediment transport into the lakes via stream

FIG. 11. As in Fig. 7, but for UVwind (shading represents wind magnitude (m s21), and the vectors represent wind direction).
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discharge and diluting the present lake water with

meltwater. Positive correlations between discharge

and KDI may be attributed to snowmelt across an

unfrozen surface, increasing the sediment transport

into the lakes. These positive correlations may also be

attributed to an increase in phosphorus and nitrogen

loading from precipitation events during the growing

season, supporting the growth of algal blooms dur-

ing late spring and summer. This is shown by Evans

et al. (2018), who found effective soil permeability

decreases rapidly below 08C, and Correll et al. (1999),

who found that the nitrogen and phosphorus concen-

tration in the Rhode River watershed inMaryland was

much higher during spring and summer than during

winter. Furthermore, Michalak et al. (2013) found

summer algal blooms in Lake Erie were closely re-

lated to increased eutrophication from heavy spring

precipitation events.

The correlations between precipitation and KDI were

much lower in magnitude with respect to the discharge–

KDI correlations. Precipitation, when examined at the

mesoscale (summed input of the reanalysis-based pre-

cipitation from individual grid points over each region),

was poorly correlated with KDI. While more highly

correlated, precipitation on a watershed scale is

still unable to account for localized conditions such

as existing stream levels or the location of precipi-

tation. Mesoscale precipitation events over heavily

agricultural areas are likely to contribute more sed-

iment load, phosphorus and nitrogen to the lakes

than precipitation events over forested areas. For this

reason, the correlations between precipitation and

KDI were generally nonsignificant and much lower

in magnitude with respect to the discharge–KDI

correlations.

c. SOM patterns and water clarity, with a focus
on Lake Erie

A nonlinear correlation between the four atmo-

spheric SOMs and each KDI region was used to de-

termine the cumulative effect of each SOM on KDI

(Fig. 6). The 500z SOM (Fig. 7) generally had the

highest correlations with KDI, particularly for re-

gions 13 and 14 in Lake Erie, followed by the 850t,

UVwind, and MSLP SOMs (described in more detail

below). This relationship is also exhibited between

FIG. 12. As in Fig. 8, but for UVwind.
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500z SOM and discharge. Overall, the four different

SOMs account for between 11% and 16% of total var-

iability explained in the three Lake Erie regions, with

Lake Saint Clair (region 11) being the only other

region showing a greater percentage of explained

variability in KDI (21%). Lakes Erie and Ontario were

consistently higher correlated with the four SOMs than

the other lakes. This may be related to the water volume

or water circulation patterns in the smaller lakes (Lakes

Erie andOntario) versus the larger lakes (Beletsky et al.

1999), where regions with larger volumes of water are

less impacted by circulation patterns than regions with

smaller volumes of water (Foley et al. 2012; Kirillin

2010). Regions 9 (LakeHuron) and 20 (LakeMichigan),

which experienced the largest changes in KDI during

the study period, had the lowest correlations with the

four SOMs. The low correlations for much of Lakes

Michigan and Huron suggests the water clarity in these

regions is likely more dependent on the increased

mussel population (and other nonclimate factors) than

atmospheric circulation patterns.

The correlation between individual CPs and KDI

is seasonally and regionally dependent. For the 500z

SOM (Fig. 7), summer-dominant CPs (left side of

the SOM) tend to relate to increased water clarity

(lower KDI values) in region 12 (Fig. 8). These CPs

have lower spatial gradients, favoring drier weather

as a result of a more zonal atmospheric flow and less

FIG. 13. As in Fig. 7, but for MSLP (hPa).
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synoptic precipitation events. Transitional CPs, or

the less extreme SOM patterns that occur frequently

during the transition from fall to winter and spring

to summer, tend to favor decreased water clarity.

Z5—which depicts the Great Lakes just east of an upper-

level trough and in an area favorable for cyclogenesis—has

the highest and most significant positive correlations

(max r 5 0.16) with KDI for region 12, with signifi-

cant correlations extending three weeks after the

CP’s occurrence.

The 850t SOM (Fig. 9) has a strong seasonal compo-

nent, with summer-dominant CPs on the left side of

the SOM, winter-dominant CPs on the right side, and

transitional CPs in the middle of the SOM (Fig. 10).

The summer-dominant CPs, particularly T7 and T8,

exhibit negative correlations (indicating clearer wa-

ter with increased frequency of these CPs) while the

transitional-season CPs show positive correlations

for region 12 during spring. This is somewhat counter-

intuitive, since warmer temperatures stimulate aquatic

plant growth, which decreases water clarity (Carr et al.

1997). However, warmer CPs during spring do not nec-

essarily translate to warm water temperatures as the

heat capacity of water results in a lag in the warming

of the lake. Increased water clarity may therefore

be indirectly related to warm CPs through the pre-

cipitation patterns associated with each CP during

spring.

The UVwind SOM has a lower seasonal component

than the 500z and 850t SOMs since winds are more

dependent on surface pressure patterns than seasonal

temperature fluctuations (Fig. 11). For this reason, the

CPs in the UVwind SOM do not tend to cluster by

seasonality as CPs in the other SOMs do. While the

correlations are primarily nonsignificant, W16 is signif-

icantly correlated (max r 5 0.19) with KDI in region 12

during spring (Fig. 12). This CP occursmostly in summer

but does (rarely) occur in late spring, bringing light to

moderate northeasterly winds in connection with cy-

clonic circulation around a center of low pressure just to

the south of the map. Such winds would likely push any

algal blooms in region 13 westward into region 12, thus

decreasing water clarity in this region.

Similar to the UVwind SOM, the MSLP SOM has a

weaker seasonal component than the 500z and 850t

SOMs (Fig. 13). Summer-dominant CPs are generally

FIG. 14. As in Fig. 8, but for MSLP.
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clustered in the right center of the SOM, whereas

winter-dominant CPs are clustered in the upper-left side

of the SOM.Winter-dominant CPs are themost extreme

MSLP CPs with the largest spatial gradients due to an

increase in midlatitude cyclones. There is generally no

relationship between MSLP CPs and KDI in region 12

during spring as only two CPs (S4 and S30) had signifi-

cant correlations during the 28-day lag period (Fig. 14).

In general, CPs along the lowest row of the SOMshowed

the greatest positive correlations—each of which depict

the Great Lakes between a high pressure to the east and

low pressure to the west. S4 exhibits the most significant

correlations (max r5 0.15) within the first 5 days of lag,

suggesting a short-term decrease in water clarity in re-

gion 12 following S4. Region 12 would likely be on the

northeastern fringe of a low pressure system during S4,

indicating precipitation and increased stream discharge

in the near term. S30 favors decreased water clarity

in region 12 during spring. This CP consists of a conti-

nental high pressure system centered over the Great

Lakes, favoring colder temperatures and less precipita-

tion across region 12.

d. Relationship between SOM patterns and discharge

Whereas the relationship between the CPs and KDI

was generally weak and nonsignificant, the relationship

between the CPs and discharge was stronger and

more significant, particularly with the 500z and 850t

CPs. The lagged correlations between 500z and

stream discharge (Fig. 15) and 850t and stream dis-

charge (Fig. 16) show that warmer CPs during the

spring favor decreased precipitation in region 12,

while cooler CPs favor increased precipitation. As

shown in Fig. 5, stream discharge is positively cor-

related with KDI in region 12 during the spring,

suggesting that a wet spring leads to decreased water

clarity in region 12. Because long-range forecasts of

stream discharge are not available, the frequency of

850t and 500z CPs derived from climate models may

be used tomodel subseasonal to seasonal water turbidity

in the Great Lakes.

e. Limitations

Since the KDI is satellite derived, cloud cover and

ice cover reduce the total number of days with avail-

able KDI data. While there are fewmissing KDI values

during meteorological summer andmeteorological fall,

many of the regions are predominantly ice covered

during meteorological winter. For this reason, winter

was omitted from the study. Several regions also

maintain ice cover through the start of meteorologi-

cal spring, especially following cold winters, resulting

FIG. 15. Correlation of 500z spatial gradient SOM patterns with discharge for region 12 during spring (March–May). Pattern numbers

are placed above the respective SOM patterns. Significant correlations (a # 0.05) are denoted with solid points.

MAY 2020 SM I TH ET AL . 929

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/08/23 03:28 PM UTC



in fewer days with KDI data than in summer and fall.

Furthermore, the number of SOM patterns used in

the pattern classification of each atmospheric vari-

able ultimately impact the results. While a larger

number of SOM patterns may better capture small

nuances in the atmospheric circulation, it reduces

the sample size of patterns for the circulation to en-

vironment analysis, thus pattern classification must

TABLE A1. Gauging stations used for each region, with the mean discharge (m3 s21) in parentheses. The station with the strongest

correlation with KDI in each region, which is used to create Fig. 5, is denoted with boldface font.

Region Gauging stations

Region 1 4024430 (10.96), 4027500 (7.49), 4036000 (4.45), and 4040000 (36.48)

Region 2 02AB008 (1.53)

Region 3 02BF001 (22.08), 4040500 (0.55), 4041500 (1.11), 4043050 (0.12), 4045500 (2.47), and 4058200 (0.03)

Region 4 02BF001 (22.08), 4040500 (0.55), 4041500 (1.11), 4043050 (0.12), 4045500 (2.47), 4058200 (0.03), 4040000 (36.48), and

4043050 (1.23)

Region 5 4040000 (36.48) and 4043050 (1.23)

Region 6 02CD001 (20.03)

Region 7 02CD001 (20.03)

Region 8 02DB005 (36.73), 02DD010 (191.67), 02EA011 (45.23), 02FA002 (1.18), and 02FB010 (5.19)

Region 9 02FA001 (14.60), 02FC001 (62.35), 02FE009 (6.31), 4142000 (9.50), 4151500 (17.43), 4159492 (9.34), 02DB005 (36.73),

02DD010 (191.77), 02EA011 (45.23), and 02FB010 (5.11)

Region 10 02FA001 (14.61), 02FC001 (62.35), 02FE009 (6.31), 4142000 (9.49), 4151500 (17.42), and 4159492 (9.27)

Region 11 4166000 (0.75), 4166100 (0.77), and 4166500 (4.44)

Region 12 4168000 (2.34), 4176500 (24.05), 4177000 (3.64), 4195500 (11.83), 4198000 (36.73), and 4193500 (168.64)

Region 13 02GC026 (9.26), 4200500 (11.27), 4201500 (10.23), 4207200 (4.14), 4208000 (29.55), and 4213000 (8.64)

Region 14 02GC008 (1.95), 02GC026 (9.26), 03021350 (6.39), 04215000 (4.27), 04215500 (7.28), and 4218518 (3.98)

Region 15 02HC018 (1.02), 02HC024 (4.28), 02HC030 (2.56), 02HD010 (0.82), 02HD012 (3.24), 04231000 (3.59), 04231600 (83.21),

04232050 (0.85), 04249000 (201.54), and 4260500 (131.89)

Region 16 4056500 (38.91), 4059000 (20.60), and 4069500 (24.51)

Region 17 4127800 (5.24), 4056500 (38.91), 4059000 (20.60), and 4069500 (24.51)

Region 18 4122500 (22.50)

Region 19 4094000 (2.50), 4102500 (13.72), 4102700 (3.01), 4122100 (0.47), 4122200 (13.24), 5528000 (3.08), 5534500 (0.32), 5535000

(0.19), 5535070 (0.32), 5535500 (0.22), 5536000 (1.10), 5536195 (1.92), and 5536290 (2.59)

Region 20 4087000 (14.34), 4087204 (0.73), 4087240 (4.69), 4087257 (1.10), and 5527800 (0.88)

FIG. 16. As in Fig. 15, but for 850t.
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strike a balance between too few and too many patterns.

This study strives to achieve this balance objectively,

although a certain level of subjectivity is always intro-

duced when deciding on the SOM learning parameters

and the final SOM dimensions. Last, the impact of

hydro control, such as dams, on stream discharge was

not assessed.

4. Summary and conclusions

This research utilizes a historical water clarity index

(KDI) to investigate the relationship between Great

Lakes water clarity and synoptic-scale weather, defined

by circulation patterns, and watershed-scale discharge

and precipitation. Although the KDI trends in Lakes

Superior, Ontario, and Erie are consistent throughout

the study period, a negative KDI trend (increased water

clarity) in Lakes Michigan and Huron is thought to be

related to an increase in invasive mussel species (Yousef

et al. 2017). Although invasive mussels are present in

other lakes, additional environmental stressors, partic-

ularly in Lake Erie, have resulted in periods of increased

KDI (decreased water clarity).

Overall, discharge showed the strongest relation-

ship with water clarity, with increasing discharge

leading to strong positive correlations in most regions

(higher KDI values 5 cloudier water) and lasting out

to 2 or more weeks in many locations—especially

in summer. While generally low in magnitude, the

nonlinear correlations between each of the four SOMs

and KDI reveal that the water clarity in smaller lakes

(Lakes Erie and Ontario) tends to be more impacted

by circulation patterns than in larger lakes, suggesting

water clarity drivers may be dampened by the dynamical

processes in lakes with larger surface areas. A closer

examination of Lake Erie in spring further suggests

the synoptic scale weather does play a small role in

impacting day-to-day variably in water clarity. In par-

ticular, circulation patterns at various levels that are

associated with increased precipitation often show the

strongest positive correlations, suggesting sediment and

nutrient runoff are the key factors linking the atmo-

sphere to springtime water clarity in the lake. While the

magnitude of the correlations between the atmospheric

variables and water clarity were generally lower than

with discharge, the relationship between the atmo-

spheric CPs and stream discharge was larger and

more significant. Because of the significant relation-

ship between atmospheric CPs and stream discharge,

long-range forecasts of water clarity in the Great

FIG. A1. Correlation between discharge and KDI for each region during summer. Pattern numbers are placed above the respective

SOM patterns. Significant correlations (a # 0.05) are denoted with color-filled points.
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Lakes may benefit by incorporating CPs as a proxy

for stream discharge.

The results of this research are currently being used to

develop neural-network-based time-series models to em-

pirically predict water clarity in the Great Lakes and

generate a complete reconstructed time series of water

clarity from1979 to 2015. Forecastmeteorological datawill

then be combined with the output of the neural-network-

based time series models with the goal of producing an

operational water clarity outlook for each region in the

Great Lakes. The linkage between atmospheric CPs and

stream discharge will continue to be explored to improve

model input for the operational water clarity outlook. The

appendix provides additional figures and tables with de-

tails that are relevant to the work presented in this paper.
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APPENDIX

Additional Results and Details

Table A1 shows gauging stations used for each region,

along with the mean discharge (m3 s21). It also gives the

station with the strongest correlation with KDI in each

region (used to create Fig. 5). Figure A1 shows the

correlation between discharge and KDI for each region

during summer. Figures A2 andA3 show the correlation

FIG. A2. Correlation between discharge and UVwind for region 12 during spring. Pattern numbers are placed above the respective

SOM patterns. Significant correlations (a # 0.05) are denoted with solid points.
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between discharge and UVwind or MSLP, respectively,

for region 12 during spring.

REFERENCES

Ackerman, S., A. Heidinger, M. Foster, and B. Maddux, 2013:

Satellite regional cloud climatology over the Great Lakes.

Remote Sens., 5, 6223–6240, https://doi.org/10.3390/RS5126223.

Barbiero, R. P., B. M. Lesht, and G. J. Warren, 2011: Evidence for

bottom–up control of recent shifts in the pelagic food web of

Lake Huron. J. Great Lakes Res., 37, 78–85, https://doi.org/

10.1016/j.jglr.2010.11.013.

Beletsky, D., J. H. Saylor, andD. J. Schwab, 1999:Mean circulation

in the Great Lakes. J. Great Lakes Res., 25, 78–93, https://

doi.org/10.1016/S0380-1330(99)70718-5.

Binding, C. E., J. H. Jerome, R. P. Bukata, and W. G. Booty, 2007:

Trends in water clarity of the lower Great Lakes from remotely

sensed aquatic color. J. Great Lakes Res., 33, 828–841, https://

doi.org/10.3394/0380-1330(2007)33[828:TIWCOT]2.0.CO;2.

Carr, G. M., H. C. Duthie, and W. D. Taylor, 1997: Models of

aquatic plant productivity: A review of the factors that influ-

ence growth. Aquat. Bot., 59, 195–215, https://doi.org/10.1016/

S0304-3770(97)00071-5.

Chapra, S. C., and D. M. Dolan, 2012: Great Lakes total phos-

phorus revisited: 2. Mass balance modeling. J. Great Lakes

Res., 38, 741–754, https://doi.org/10.1016/j.jglr.2012.10.002.

Correll, D. L., T. E. Jordan, and D. E. Weller, 1999: Transport of

nitrogen and phosphorus from Rhode River watersheds dur-

ing storm events. Water Resour. Res., 35, 2513–2521, https://

doi.org/10.1029/1999WR900058.

Davies-Colley, R. J., and D. G. Smith, 2001: Turbidity suspended

sediment, and water clarity: A review. J. Amer. Water

Resour. Assoc., 37, 1085–1101, https://doi.org/10.1111/j.1752-

1688.2001.tb03624.x.

Dobiesz, N. E., and N. P. Lester, 2009: Changes in mid-summer

water temperature and clarity across theGreat Lakes between

1968 and 2002. J. Great Lakes Res., 35, 371–384, https://

doi.org/10.1016/j.jglr.2009.05.002.

Evans, S. G., S. Ge, C. I. Voss, and N. P. Molotch, 2018: The role of

frozen soil in groundwater discharge predictions for warming

alpine watersheds. Water Resour. Res., 54, 1599–1615, https://

doi.org/10.1002/2017WR022098.

Fahnenstiel, G., S. Pothoven, H. Vanderploeg, D. Klarer, T. Nalepa,

and D. Scavia, 2010: Recent changes in primary production

and phytoplankton in the offshore region of southeastern

Lake Michigan. J. Great Lakes Res., 36, 20–29, https://doi.org/

10.1016/j.jglr.2010.03.009.

Foley, B., I. D. Jones, S. C. Maberly, and B. Rippey, 2012: Long-

term changes in oxygen depletion in a small temperate lake:

Effects of climate change and eutrophication. Freshwater Biol.,

57, 278–289, https://doi.org/10.1111/j.1365-2427.2011.02662.x.

Fuller, K., H. Shear, and J.Wittig, Eds., 1995: TheGreat Lakes: An

environmental atlas and resource book. U.S. EPA Tech. Rep.

905-B-95-001, 46 pp.

Great Lakes Environmental Research Laboratory, 2019: About our

Great Lakes: Lake by lake profiles. NOAA, accessed 5May 2019,

https://www.glerl.noaa.gov/education/ourlakes/lakes.html.

Hewitson, B., and R. Crane, 2002: Self-organizing maps:

Applications to synoptic climatology. Climate Res., 22, 13–

26, https://doi.org/10.3354/cr022013.

Kirillin, G., 2010: Modeling the impact of global warming on water

temperature and seasonal mixing regimes in small temperate

lakes. Boreal Environ. Res., 15, 279–293.

Krantzberg, G., and C. D. Boer, 2006: A valuation of ecological

services in the Great Lakes Basin ecosystem to sustain healthy

communities and a dynamic economy. McMaster University

Dofasco Centre for Engineering and Public Policy Rep.,

99 pp., http://longpointbiosphere.com/download/Environment/

krantz2.pdf.

FIG. A3. Correlation between discharge and MSLP for region 12 during spring. Pattern numbers are placed above the respective

SOM patterns. Significant correlations (a # 0.05) are denoted with solid points.

MAY 2020 SM I TH ET AL . 933

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/08/23 03:28 PM UTC

https://doi.org/10.3390/RS5126223
https://doi.org/10.1016/j.jglr.2010.11.013
https://doi.org/10.1016/j.jglr.2010.11.013
https://doi.org/10.1016/S0380-1330(99)70718-5
https://doi.org/10.1016/S0380-1330(99)70718-5
https://doi.org/10.3394/0380-1330(2007)33[828:TIWCOT]2.0.CO;2
https://doi.org/10.3394/0380-1330(2007)33[828:TIWCOT]2.0.CO;2
https://doi.org/10.1016/S0304-3770(97)00071-5
https://doi.org/10.1016/S0304-3770(97)00071-5
https://doi.org/10.1016/j.jglr.2012.10.002
https://doi.org/10.1029/1999WR900058
https://doi.org/10.1029/1999WR900058
https://doi.org/10.1111/j.1752-1688.2001.tb03624.x
https://doi.org/10.1111/j.1752-1688.2001.tb03624.x
https://doi.org/10.1016/j.jglr.2009.05.002
https://doi.org/10.1016/j.jglr.2009.05.002
https://doi.org/10.1002/2017WR022098
https://doi.org/10.1002/2017WR022098
https://doi.org/10.1016/j.jglr.2010.03.009
https://doi.org/10.1016/j.jglr.2010.03.009
https://doi.org/10.1111/j.1365-2427.2011.02662.x
https://www.glerl.noaa.gov/education/ourlakes/lakes.html
https://doi.org/10.3354/cr022013
http://longpointbiosphere.com/download/Environment/krantz2.pdf
http://longpointbiosphere.com/download/Environment/krantz2.pdf


Lee, C. C., 2014: The development of a gridded weather typing

classification scheme. Int. J. Climatol., 35, 641–659, https://

doi.org/10.1002/joc.4010.

——, 2017: Reanalysing the impacts of atmospheric tele-

connections on cold-season weather usingmultivariate surface

weather types and self-organizing maps. Int. J. Climatol., 37,

3714–3730, https://doi.org/10.1002/joc.4950.

——, S. C. Sheridan, B. B. Barnes, C. Hu, D. E. Pirhalla,

V. Ransibrahmanakul, and K. Shein, 2017: The develop-

ment of a non-linear autoregressive model with exogenous

input (NARX) to model climate-water clarity relationships:

Reconstructing a historical water clarity index for the coastal

waters of the southeastern USA. Theor. Appl. Climatol., 130,

557–569, https://doi.org/10.1007/s00704-016-1906-7.

Lee, Z., K.-P. Du, and R. Arnone, 2005: A model for the diffuse

attenuation coefficient of downwelling irradiance. J. Geophys.

Res., 110, C02016, https://doi.org/10.1029/2004JC002275.

——, and Coauthors, 2018: Global water clarity: Continuing a

century-long monitoring. Eos, Trans. Amer. Geophys. Union,

99, https://doi.org/10.1029/2018EO097251.

Makarewicz, J. C., T. W. Lewis, and P. Bertram, 1999:

Phytoplankton composition and biomass in the offshore

waters of Lake Erie: Pre- and post-Dreissena introduction

(1983–1993). J. Great Lakes Res., 25, 135–148, https://

doi.org/10.1016/S0380-1330(99)70722-7.

Mason, L. A., C. M. Riseng, A. D. Gronewold, E. S. Rutherford,

J.Wang,A. Clites, S.D. P. Smith, and P. B.Mcintyre, 2016: Fine-

scale spatial variation in ice cover and surface temperature

trends across the surface of theLaurentianGreat Lakes.Climatic

Change, 138, 71–83, https://doi.org/10.1007/s10584-016-1721-2.

Mesinger, F., and Coauthors, 2006: North American Regional

Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360, https://

doi.org/10.1175/BAMS-87-3-343.

Michalak, A. M., and Coauthors, 2013: Record-setting algal bloom in

Lake Erie caused by agricultural and meteorological trends con-

sistentwith expected future conditions.Proc.Natl.Acad. Sci.USA,

110, 6448–6452, https://doi.org/10.1073/pnas.1216006110.

Millie, D. F., G. L. Fahnenstiel, J. D. Bressie, R. J. Pigg, R. R. Rediske,

D.M. Klarer, P. A. Tester, andR.W. Litaker, 2009: Late-summer

phytoplankton in western Lake Erie (Laurentian Great Lakes):

Bloomdistributions, toxicity, andenvironmental influences.Aquat.

Ecol., 43, 915–934, https://doi.org/10.1007/s10452-009-9238-7.

Nalepa, T. F., D. L. Fanslow, and G. A. Lang, 2009: Transformation

of the offshore benthic community in lake Michigan: Recent

shift from the native amphipod Diporeia spp. to the invasive

mussel Dreissena rostriformis bugensis. Freshwater Biol., 54,

466–479, https://doi.org/10.1111/j.1365-2427.2008.02123.x.

——, ——, and S. A. Pothoven, 2010: Recent changes in density, bio-

mass, recruitment, size structure, and nutritional state ofDreissena

populations in southern Lake Michigan. J. Great Lakes Res.,

36, 5–19, https://doi.org/10.1016/j.jglr.2010.03.013.
Niemistö, J., 2008: Sediment resuspension as a water quality regu-

lator in lakes. Ph.D. dissertation, University of Helsinki, 47 pp.

Philipp, A., C. Beck, S. Kaspar, and J. Jacobeit, 2014: Combining ar-

tificial neural networks and circulation type classification: Does it

improve downscaling models? Geophysical Research Abstracts,

Vol. 16, Abstract EGU2014-16395-1, https://meetingorganizer.

copernicus.org/EGU2014/EGU2014-16395-1.pdf.

Pirhalla, D. E., S. C. Sheridan, V. Ransibrahmanakul, and C. C. Lee,

2014: Assessing cold-snap and mortality events in South Florida

coastal ecosystems: Development of a biological cold stress in-

dex using satellite SST and weather pattern forcing. Estuaries

Coasts, 38, 2310–2322, https://doi.org/10.1007/s12237-014-9918-y.

Ransibrahmanakul, V., S. J. Pittman, D. E. Pirhalla, S. C. Sheridan,

C. C. Lee, B. B. Barnes, C. Hu, and K. Shein, 2018: Linking

weather patterns, water quality and invasive mussel distribu-

tions in the development and application of a water clarity

index for the Great Lakes. IEEE Int. Geoscience and Remote

Sensing Symp., Valencia, Spain, IEEE, https://doi/org/10.1109/

IGARSS.2018.8518935.

Rennie, M. D., W. G. Sprules, and T. B. Johnson, 2009:

Resource switching in fish following a major food web dis-

ruption. Oecologia, 159, 789–802, https://doi.org/10.1007/

s00442-008-1271-z.

Ricciardi,A., F.G.Whoriskey, and J. B.Rasmussen, 1997: The role of

the zebra mussel (Dreissena polymorpha) in structuring macro-

invertebrate communities on hard substrata. Can. J. Fish. Aquat.

Sci., 54, 2596–2608, https://doi.org/10.1139/f97-174.

Robertson, D. M., and D. A. Saad, 2011: Nutrient inputs to the

Laurentian Great Lakes by source and watershed estimated using

SPARROWwatershedmodels. J.Amer.WaterResour.Assoc.,47,

1011–1033, https://doi.org/10.1111/j.1752-1688.2011.00574.x.

Scavia, D., and Coauthors, 2014: Assessing and addressing the

re-eutrophication of Lake Erie: Central basin hypoxia.

J. Great Lakes Res., 40, 226–246, https://doi.org/10.1016/

J.JGLR.2014.02.004.

Sheridan, S. C., and C. C. Lee, 2011: The self-organizing map in

synoptic climatological research. Prog. Phys. Geogr., 35,

109–119, https://doi.org/10.1177/0309133310397582.

——, D. E. Pirhalla, C. C. Lee, and V. Ransibrahmanakul, 2013:

Evaluating linkages of weather patterns and water quality

responses in South Florida using a synoptic climatological

approach. J. Appl. Meteor. Climatol., 52, 425–438, https://

doi.org/10.1175/JAMC-D-12-0126.1.

——, C. Hu, C. C. Lee, B. Barnes, D. Pirhalla, V. Ransi, and K. A.

Shein, 2014: Development of a water clarity index for the

southeastern U.S. as a climate indicator. 2014 Fall Meeting, San

Francisco, CA, Amer. Geophys. Union, Abstract GC51B-0407.

Shuchman, R. A., K. R. Bosse, M. J. Sayers, G. L. Fahnenstiel,

and G. Leshkevich, 2017: Satellite observed water quality

changes in the Laurentian Great lakes due to invasive

species, anthropogenic forcing, and climate change. Int.

Arch. Photogramm. Remote Sens. Spat. Inf. Sci, XLII-3,

189–195, https://doi.org/10.5194/isprs-archives-XLII-3-W2-

189-2017.

Skubinna, J. P., T. G. Coon, and T. R. Batterson, 1995: Increased

abundance and depth of submersed macrophytes in re-

sponse to decreased turbidity in Saginaw Bay, Lake Huron.

J. Great Lakes Res., 21, 476–488, https://doi.org/10.1016/

S0380-1330(95)71060-7.

Thiery, W., A. Martynov, F. Darchambeau, J. P. Descy, P. D. Plisnier,

L. Sushama, and N. P. van Lipzig, 2014: Understanding the

performance of the Flake model over two African Great

Lakes.Geosci.ModelDev., 7, 317–337, https://doi.org/10.5194/

GMD-7-317-2014.

Trumpickas, J., B. J. Shuter, and C. K. Minns, 2009: Forecasting

impacts of climate change on Great Lakes surface water

temperatures. J. Great Lakes Res., 35, 454–463, https://doi.org/

10.1016/j.jglr.2009.04.005.

U.S. Geological Survey, 2017: USGS water data for the nation.

National water information system data: Web interface. U.S.

Department of the Interior, accessed 6 February 2017, http://

waterdata.usgs.gov/nwis/.

Vanderploeg, H. A., J. R. Liebig, W. W. Carmichael, M. A. Agy,

T. H. Johengen, G. L. Fahnenstiel, and T. F. Nalepa, 2001:

Zebra mussel (Dreissena polymorpha) selective filtration

934 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 59

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/08/23 03:28 PM UTC

https://doi.org/10.1002/joc.4010
https://doi.org/10.1002/joc.4010
https://doi.org/10.1002/joc.4950
https://doi.org/10.1007/s00704-016-1906-7
https://doi.org/10.1029/2004JC002275
https://doi.org/10.1029/2018EO097251
https://doi.org/10.1016/S0380-1330(99)70722-7
https://doi.org/10.1016/S0380-1330(99)70722-7
https://doi.org/10.1007/s10584-016-1721-2
https://doi.org/10.1175/BAMS-87-3-343
https://doi.org/10.1175/BAMS-87-3-343
https://doi.org/10.1073/pnas.1216006110
https://doi.org/10.1007/s10452-009-9238-7
https://doi.org/10.1111/j.1365-2427.2008.02123.x
https://doi.org/10.1016/j.jglr.2010.03.013
https://meetingorganizer.copernicus.org/EGU2014/EGU2014-16395-1.pdf
https://meetingorganizer.copernicus.org/EGU2014/EGU2014-16395-1.pdf
https://doi.org/10.1007/s12237-014-9918-y
https://doi/org/10.1109/IGARSS.2018.8518935
https://doi/org/10.1109/IGARSS.2018.8518935
https://doi.org/10.1007/s00442-008-1271-z
https://doi.org/10.1007/s00442-008-1271-z
https://doi.org/10.1139/f97-174
https://doi.org/10.1111/j.1752-1688.2011.00574.x
https://doi.org/10.1016/J.JGLR.2014.02.004
https://doi.org/10.1016/J.JGLR.2014.02.004
https://doi.org/10.1177/0309133310397582
https://doi.org/10.1175/JAMC-D-12-0126.1
https://doi.org/10.1175/JAMC-D-12-0126.1
https://doi.org/10.5194/isprs-archives-XLII-3-W2-189-2017
https://doi.org/10.5194/isprs-archives-XLII-3-W2-189-2017
https://doi.org/10.1016/S0380-1330(95)71060-7
https://doi.org/10.1016/S0380-1330(95)71060-7
https://doi.org/10.5194/GMD-7-317-2014
https://doi.org/10.5194/GMD-7-317-2014
https://doi.org/10.1016/j.jglr.2009.04.005
https://doi.org/10.1016/j.jglr.2009.04.005
http://waterdata.usgs.gov/nwis/
http://waterdata.usgs.gov/nwis/


promoted toxic microcystis blooms in Saginaw Bay (Lake

Huron) and LakeErie.Can. J. Fish. Aquat. Sci., 58, 1208–1221,

https://doi.org/10.1139/f01-066.

Water Survey of Canada, 2017: HYDAT. Accessed 2 February

2018, https://www.canada.ca/en/environment-climate-change/

services/water-overview/quantity/monitoring/survey.html.

Watson, S. B., and Coauthors, 2016: The re-eutrophication of Lake

Erie: Harmful algal blooms and hypoxia. Harmful Algae, 56,
44–66, https://doi.org/10.1016/j.hal.2016.04.010.

Yousef, F., R. Shuchman, M. Sayers, G. Fahnenstiel, and

A. Henareh, 2017: Water clarity of the Upper Great Lakes:

Tracking changes between 1998–2012. J. Great Lakes Res., 43,

239–247, https://doi.org/10.1016/j.jglr.2016.12.002.

Zhao, J., B. Barnes, N. Melo, D. English, B. Lapointe, F. Muller-

Karger, B. Schaeffer, and C. Hu, 2013: Assessment of satellite-

derived diffuse attenuation coefficients and euphotic depths

in South Florida coastal waters. Remote Sens. Environ., 131,
38–50, https://doi.org/10.1016/j.rse.2012.12.009.

MAY 2020 SM I TH ET AL . 935

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/08/23 03:28 PM UTC

https://doi.org/10.1139/f01-066
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey.html
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey.html
https://doi.org/10.1016/j.hal.2016.04.010
https://doi.org/10.1016/j.jglr.2016.12.002
https://doi.org/10.1016/j.rse.2012.12.009

